For Better Performance Please Use Chrome or Firefox Web Browser


An updated list of my publication can be found here:

Published papers: 
[49]Sajadian, Sedighe and Kailash C. Sahu (Mar. 2023). “Detecting Isolated Stellar-mass Black Holes with the Roman Telescope”. In: AJ 165.3, 96, p. 96. doi: 10.3847/1538-3881/acb20f. arXiv: 2301.03812 [astro-ph.GA].

[48] Sajadian, Sedighe and Parisa Sangtarash (Feb. 2023). “Microlensing due to free-floating moon-planet systems”. In: arXiv e-prints, arXiv:2302.05230, arXiv:2302.05230. arXiv: 2302.05230 [astro-ph.EP].
[47] Fatheddin, Hossein and Sedighe Sajadian (Dec. 2022a). “A Statistical Relation between Mass, Age and Velocity Dispersion in the Solar Neighborhood”. In: arXiv e-prints, arXiv:2212.13349, arXiv:2212.13349. arXiv: 2212.13349 [astro-ph.GA].

[46] — (Aug. 2022b). “Improved Aberth-Ehrlich root-finding algorithm and its further application for binary microlensing”. In: MNRAS 514.3, pp. 4379–4384. doi: 10.1093/mnras/ stac1565. arXiv: 2206.00482 [astro-ph.IM].

[45] Herald, A. et al. (July 2022). “Precision measurement of a brown dwarf mass in a binary system in the microlensing event. OGLE-2019-BLG-0033/MOA-2019-BLG-035”. In: A &A 663, A100, A100. doi: 10.1051/0004-6361/202243490. arXiv: 2203.04034 [astro-ph.SR].

[44] Rożek, Agata et al. (Sept. 2022). “Physical properties of near-Earth asteroid (2102) Tantalus from multiwavelength observations”. In: MNRAS 515.3, pp. 4551–4564. doi: 10.1093/mnras/ stac1835. arXiv: 2206.14306 [astro-ph.EP].

[43] Sahu, Kailash C. et al. (July 2022). “An Isolated Stellar-mass Black Hole Detected through Astrometric Microlensing”. In: ApJ 933.1, 83, p. 83. doi: 10.3847/1538-4357/ac739e. arXiv: 2201.13296 [astro-ph.SR].

[42] Sajadian, S. and U. G. Jørgensen (Jan. 2022). “Variation of the stellar color in high-magnification
and caustic-crossing microlensing events”. In: A &A 657, A16, A16. doi: 10.1051/0004-6361/202141623. arXiv: 2109.14413 [astro-ph.EP].

[41] Sajadian, Sedighe, Sohrab Rahvar, and Fatemeh Kazemian (Sept. 2022). “Mass-Velocity Disper-sion Relation by Using the Gaia Data and Its Effect on Interpreting Short-duration and Degenerate Microlensing Events”. In: AJ 164.3, 112, p. 112. doi: 10.3847/1538-3881/ac82e9. arXiv:
2103.10593 [astro-ph.SR].

[40] Southworth, John, A. J. Barker, et al. (Sept. 2022). “A search for transit timing variations in the HATS-18 planetary system”. In: MNRAS 515.3, pp. 3212–3223. doi: 10.1093/mnras/stac1931. arXiv: 2207.05873 [astro-ph.EP].
[39] Southworth, John, L. Mancini, et al. (July 2022). “VLT, GROND and Danish Telescope  observations of transits in the TRAPPIST-1 system”. In: arXiv e-prints, arXiv:2207.05874, arXiv:2207.05874. arXiv: 2207.05874 [astro-ph.EP]. 3/7
[38] Kelley, Michael S. P. et al. (Aug. 2021). “Six Outbursts of Comet 46P/Wirtanen”. In: 2.4, 131,
p. 131. doi: 10.3847/PSJ/abfe11.

[37] Khalouei, Elahe, Sedighe Sajadian, and Sohrab Rahvar (Mar. 2021). “Measuring stellar atmo-sphere parameters using follow-up polarimetric microlensing observations”. In: MNRAS 501.3, pp. 3203–3214. doi: 10.1093/mnras/staa3492. arXiv: 2011.03642 [astro-ph.SR].
[36] Kondo, Iona et al. (Aug. 2021). “OGLE-2018-BLG-1185b: A Low-mass Microlensing Planet Orbiting a Low-mass Dwarf”. In: AJ 162.2, 77, p. 77. doi: 10.3847/1538-3881/ac00ba. arXiv: 2104.02157 [astro-ph.EP].

[35] Sajadian, Sedighe (Sept. 2021a). “On the detection of free-floating planets through microlensing towards the Magellanic Clouds”. In: MNRAS 506.3, pp. 3615–3628. doi: 10.1093/mnras/stab1907. arXiv: 2107.02954 [astro-ph.EP].

[34] — (Dec. 2021b). “Sensitivity to habitable planets in the Roman microlensing survey”. In: MNRAS 508.4, pp. 5991–6000. doi: 10.1093/mnras/stab2942. arXiv: 2110.05751 [astro-ph.EP].

[33]Sajadian, Sedighe, Richard Ignace, and Hilding Neilson (Nov. 2021). “Identifying low-amplitude pulsating stars through microlensing observations”. In: MNRAS 507.4, pp. 5177–5186. doi: 10.1093/mnras/stab2410. arXiv: 2108.08650 [astro-ph.SR].

[32]Sajadian, Sedighe and Mahshad Rishidi (Aug. 2021). “Perturbation effect of stellar spots on light curves of gravitational microlensing”. In: IJPR 21.2, 293, p. 293. doi: 10.47176/ijpr.21. 2.91118.

[31]Hirao, Yuki et al. (Aug. 2020). “OGLE-2017-BLG-0406: Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk”. In: AJ 160.2, 74, p. 74. doi: 10.3847/1538-3881/ab9ac3. arXiv: 2004.09067 [astro-ph.EP].

[30]Hitchcock, J. A. et al. (July 2020). “Large-scale changes of the cloud coverage in the Indi Ba and Bb system”. In: MNRAS 495.4, pp. 3881–3899. doi: 10.1093/mnras/staa1344. arXiv: 2005.06906 [astro-ph.SR].

[29] Sajadian, Sedighe and Richard Ignace (May 2020a). “Microlensing of radially pulsating stars”. In: MNRAS 494.2, pp. 1735–1743. doi: 10.1093/mnras/staa837. arXiv: 2003.10318 [astro-ph.SR].
[28]-- (Oct. 2020b). “Non-radially pulsating stars as microlensing sources”. In: MNRAS 498.1, pp. 223–234. doi: 10.1093/mnras/staa2429. arXiv: 2008.04171 [astro-ph.SR].

[27]Sajadian, Sedighe and Ali Salehi (Oct. 2020). “Detecting the inner regions of discs around sources of microlensing with Roman Space Telescope”. In: MNRAS 498.1, pp. 1298–1307. doi: 10.1093/mnras/staa2377. arXiv: 2008.02847 [astro-ph.SR].

[26 ]Sangtarash, Parisa and Sedighe Sajadian (Jan. 2020). “Limb-darkening effect of source stars
in gravitational microlensing observations in different filters”. In: IJPR 20.3, 495, p. 495. doi:10.47176/ijpr.20.3.71096.

[25] Zang, Weicheng et al. (Mar. 2020). “Spitzer Microlensing Parallax Reveals Two Isolated Stars in the Galactic Bulge”. In: ApJ 891.1, 3, p. 3. doi: 10.3847/1538-4357/ab6ff8. arXiv: 1904.11204 [astro-ph.SR].

[24] Transit timing variations in the WASP-4 planetary system, Southworth, Dominik, Jorgensen, et.  al., (2019),  MNRAS, 490, 4230.  
[23] Detection of Exoplanet as a Binary Source of Microlensing Events in WFIRST Survey, Bagheri, Sajadian, Rahvar, (2019), MNRAS, 490, 1581. 
[22] The effect of variation of stellar dispersion velocities by the galactic latitude in interpreting gravitational microlensing observations, Sajadian, Rahvar, (2019), IJPR, 19, 391. 
[21] OGLE-2017-BLG-1186: first application of asteroseismology and Gaussian processes to microlensing,  Li, Zang, Udalski,  et. al., (2019), MNRAS, 488, 3308.
[20] Polarization in caustic-crossing binary microlensing events, Sajadian, (2019), MNRAS, 487, 908.
[19] OGLE-2018-BLG-0022: A Nearby M-dwarf Binary, Street,  Bachelet, Tesapras, et. al., (2019), AJ, 157, 215.
[18] Spitzer Microlensing Parallax for OGLE-2017-BLG-0896 Reveals a Counter-Rotating Low-Mass Brown Dwarf, Shvartzvald, Yee, Skowron, et. al., (2019), AJ,  157, 106.
[17] Prediction on detection and characterization of Galactic disk microlensing events by LSST, Sajadian, Poleski, (2019),  ApJ, 871, 205.
[16] Review on data reduction process of microlensing events, Sajadian, Adami, Mohamadi, (2019), IJPR, 19, 815.  

[15] High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016, Evans, Southworth, Smalley, et. al.,  (2018),  A&A, 610, 20. 
[14] OGLE-2017-BLG-1434Lb: Eighth q < 10^-4 Mass-Ratio Microlens Planet Confirms Turnover in Planet Mass-Ratio Function, Udalski,  Ryu, Sajadian, et. al., (2018), AcA, 68,1.
[13] OGLE-2017-BLG-0329L: A Microlensing Binary Characterized by Dramatically Enhanced Precision Using Data from Space-based Observations, Han, Calchi Novati, Udalski, et. al., (2018), ApJ, 859, 82. 

[12] OGLE-2016-BLG-1190Lb: First Spitzer Bulge Planet Lies Near the Planet/Brown-Dwarf Boundary, Ryu, Yee, Udalski, Bond, et. al.,  (2017), AJ, 155, 1.
[11] Polarimetry Microlensing of close-in planetary systems, Sajadian, Hundertmark,  (2017), ApJ, 838, 157.
[10] Understanding the EROS2 observations towards the spiral arms within a classical Galactic model framework, Moniez, Sajadian, Karami, Rahvar, Ansari, (2017), A&A, 614, 124.

[9] Stellar rotation effects on polarimetric microlensing, Sajadian, (2016), ApJ, 825, 152. 
[8] The advantages of using a Lucky Imaging camera for observations of microlensing events, Sajadian, Rahvar, Dominik, Hundertmark, (2016), MNRAS, 458, 3248.

[7] Polarimetric microlensing of circumstellar disks, Sajadian, Rahvar, (2015), MNRAS, 454, 4429.
[6] Detecting stellar spots through polarimetric observations of microlensing events in caustic-crossing, Sajadian, (2015), MNRAS, 452, 2587.
[5] Photometric, Astrometric and Polarimetric observations of gravitational microlensing events, Sajadian, Rahvar, (2015), MNRAS, 452, 2579. 
[4] Binary astrometric microlensing with Gaia, Sajadian, (2015), AJ, 149, 147. 
2014 and before
[3] Orbital motion effects in astrometric microlensing, Sajadian, (2014), MNRAS, 439, 3007. 
[2] Simulation of a strategy for the pixel lensing of M87 by HST, Sajadian, Rahvar,  (2011), MNRAS, 419, 124.
[1] Illuminating Hot Jupiters in caustic crossing, Sajadian, Rahvar, (2010),  MNRAS, 407, 373.

تحت نظارت وف ایرانی